A new enumeration scheme for the knapsack problem
نویسندگان
چکیده
منابع مشابه
A New Fully Polynomial Approximation Scheme for the Knapsack Problem
A new fully polynomial approximation scheme (FPTAS) is presented for the classical 0{1 knapsack problem. It considerably improves the space requirements. The two best previously known approaches need O(n+1=" 3) and O(n1=") space, respectively. Our new approximation scheme requires only O(n + 1=" 2) space while also reducing the running time.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Partitioning Scheme for Solving the 0-1 Knapsack Problem
The application of valid inequalities to provide relaxations which can produce tight bounds, is now common practice in Combinatorial Optimisation. This paper attempts to complement current theoretical investigations in this regard. We experimentally search for "valid" equalities which have the potential of strengthening the problem's formulation. Recently, Martello and Toth [13] included cardin...
متن کاملA Polynomial Time Approximation Scheme for the Multiple Knapsack Problem
The multiple knapsack problem (MKP) is a natural and well-known generalization of the single knapsack problem and is defined as follows. We are given a set of n items and m bins (knapsacks) such that each item i has a profit p(i) and a size s(i), and each bin j has a capacity c(j). The goal is to find a subset of items of maximum profit such that they have a feasible packing in the bins. MKP is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 1987
ISSN: 0166-218X
DOI: 10.1016/0166-218x(87)90024-2